EXPERIMENTAL CHANGES OF THE HURST EXPONENT BEHAVIOR OF THE
GEOELECTRICAL POTENTIAL AND ITS POSSIBLE RELATION TO THE CHANGES OF
SPECTRAL POWER-LAW EXPONENT OF THE SEISMIC ACTIVITY IN WESTERN
GREECE

Apostolos Ifantis*>", Christos Theoharatos™, Vassilis Toagaris™* and Gerasimos-Akis Tselentis”

*Department of Electrical Engineering, Control System and Signal Laboratory, Technological Institute of Patras, Patras, Greece
"Department of Geology, Seismological Laboratory, University of Patras, Patras 26500, Greece.
“Department of Physics, Electronics Laboratory, University of Patras, Patras 26500, Greece.
" Corresponding author. E-mail addresses: ifantisa@teipat.gr, ifantis@geology.upatras.gr (A. Ifantis).

ABSTRACT

This paper presents observations of the long-term Geoelectric
Potential Difference. The data have been collected during a
five-year (1993-1997) experimental investigation. For data
acquisition an automatic system for collection, transfer and
processing of Geoelectric measurements operates at the
Earthquake prediction section of the University of Patras
Seismological Laboratory (UPSL). The emphasis in this
work is given towards investigation of experimental changes
of the Hurst exponent behavior of the geoelectrical potential
difference and its possible relation with the changes of the
spectral power-law exponent of the seismic activity in West-
ern Greece. The comparison of both parameters leads to a
possible correlation between geoelectrical time fluctuations
and earthquakes in the seismic area. A theoretical explanation
of the above results is also given.

1. INTRODUCTION

Investigations of the changes of geoelectriomagnetics signals
for the purpose of earthquake prediction are carried out in
United States, Russia, Japan, China, Italian, Bulgaria, and
other countries. Among the different presented methods, the
study of anomalies in the behavior of the geoelectromagnetic
field has attracted most of the attention and over the last two
decades geoelectrical measurements over a broad frequency
range have been carried out. Detected signals vary in dura-
tion pattern, having specific features and spectral characteris-
tics. There is strong evidence that anomalous changes of the
geoelectromagnetic field take place prior to strong earth-
quakes and great effort has been made to correlate this activ-
ity with the impending earthquakes. Geoelectromagnetic
precursors to earthquakes have been reported by a number of
researchers, raising hopes that prediction of damaging earth-
quakes might be possible [1-7].

Among the most extensive and promising reports of precur-
sor electromagnetic signals are the observations of the Long-
Term Geoelectric Potential (LTGP). An earthquake is not an
instantaneous phenomenon; it is accompanied with pre-
seismic geotectonic variations, therefore a possible correla-
tion of the behavior of the LTGP and an oncoming earth-
quake is of great importance. Recently, Hayakawa [8], Uyeda

[9] and Telesca [10,11] proposed a fractal analysis of Ultra
Low Frequency geoelectric data showing that strong earth-
quakes were preceded by a decrease of the spectral power-
law exponent approaching unity.

The data presented in this paper have been collected during
a five-year (1993-1997) independent experimental investiga-
tion at the Earthquake Prediction Section of the University
of Patras Seismological Laboratory (UPSL). During the pe-
riod 1993-1997 several destructive earthquakes occurred in
Western Greece, a territory with the highest seismic activity
in Europe. In this work, correlation between Hurst coeffi-
cient strongly connected with the geoelectrical time series
and the power-law spectral exponent of the inter event seis-
mic intervals is presented.

The remainder of this paper is organized as follows. In Sec-
tion 2 the acquisition system along with the data are de-
scribed. Section 3 provides the necessary theoretical back-
ground for data analysis. Results including a short discussion
are presented in Section 4. Finally, conclusions are drawn.

2. LTGPACQUISITION SYSTEM

In this system the monitoring of the geoelectric potential
difference is achieved by one set of dipoles arranged in short
as well as long distances. This dipole makes use of Pb-PbCl,
electrodes. The set has an electrode separation of 100m and
direction E-W and will be referred to as Channel 1. The di-
pole is located at the outskirts of the University of Patras, in
Rio, in a rather quiet countryside and is based in Pleistocene
compact conglomerates. The exact geographical position of
the station can be found in fig. 1. The signal produced by this
dipole is initially directed to an electronic VAN device. Af-
terwards, it is directed to an A/D converter, which is set to
digitize at a rate of 3 samples/min. The converter is con-
nected to an ordinary PC where monitoring and processing of
the signals is taking place. This channel is also connected to a
pen-recorder and a graph paper illustrates continuously the
changes in the area. The obtained electro-telluric signal is
transmitted via a dedicated line to the control room. The
channel signal is therefore anti-alias filtered with a 30Hz
Butterworth low-pass filter sampled at 100Hz and converted
to digital form with a 32-bit resolution.
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2.1 Observed Signals

Reported electromagnetic precursor signals appear to have a
wide range of time duration, amplitude level and spectral
characteristics. The parameters, which are measured continu-
ously with the above data acquisition system, are the long
time variations of the geoelectric potential. The digitization
rate for observing long time variations in our station is set at
Isample/hr. That is, approximately 43600 data (points) have
been obtained during the period 1993-1997.

The geoelectric potential difference that has been monitored
during the five-year investigation (1993-1997) is presented in
fig. 2 (Channel No 1). The major earthquakes (>4.8My)

which occurred during this period are shown at the top of
each figure. Table 1 provides additional details about these.

Table 1: Major earthquakes occurred in Western Greece dur-
ing the period 1993-1997.

No Point ‘ Magnitude Distance ‘ Date ‘ Depth ‘
(km) (km)
1| 1543 | 53 | 176 | 05/03/93 | 64 |
2 | 1863 | 49 | 44 | 18/03/93 | 15 |
3 | 2055 | 5.0 | 100 | 26/03/93 | 183 |
4 | 3960 | 5.4 | 192 | 13/06/93 | 400 |
5 | 4700 | 5.1 | 15 | 14/07/93 | 502 |
6 | 10082 | 53 | 147 | 25/02/94 | 497 |
7 | 11304 | 53 | 182 | 16/04/94 | 364 |
8 | 16744 | 49 | 159 | 291194 | 282 |
9 | 16783 | 48 | 148 | 01/12/94 | 358 |
10 | 21505 | 56 | 9 | 1506/95 | 509 |
11 | 21506 | 5.1 | 43 | 15/06/95 | 37|
12 | 24030 | 48 | 29 | 2809095 | 304 |
13 | 30064 | 49 | 130 | 06/06/9 | 358 |
14 | 42453 | 49 | 55 | 051197 | 283 |
15 | 42616 | 4.8 | 200 | 121197 | 566 |
16 | 42757 | 6.1 | 206 | 181197 | 369 |
17 | 42758 | 5.6 | 183 | 18/1197 | 483 |
18 | 42759 | 5.0 | 209 | 1sn197 | 324 |

3. BACKGROUND

The temporal fluctuation of a time series can be studied by
means of power spectral density. In this work the spectral
analysis of geoelectrical signals, using the well-known Pe-
riodogram method, is employed. Let us denote by x, the

geoelectrical signal measured at time ¢, and by x its mean

value. The periodogram of this signal is defined as:
2
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and o =27 with f the frequency. For a time series with
scaling behavior the power spectrum behaves as a power-law
function of the frequency f, P(f) ocl/ ¢, where a
characterizes the temporal fluctuations of the time series (for
white noise time series, a =0). In this work the temporal
fluctuations of the earthquakes, occurred in the area of West-
ern Greece from 1993 to 1997, are studied analyzing the se-
quence of the inter-event intervals using the Spectral Power
Law exponent.
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Figure 1: Epicenters of the major earthquakes in Western
Greece during the period 1993-1997.

On the other hand, the geoelectrical potential is studied by
means of the Hurst exponent, H [12,13]. The basic idea in
order to estimate H from the recorded data consisting of
SP(ti) values sampled at uniform intervals of Af, is to de-
termine how the range of the cumulative fluctuations de-
pends on the length of the subset of the data analyzed.
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Figure 2: Geoelectric signal of Channel 1.

Consider the whole data set covering a total duration

Tmax = NmaxAf . Its mean value over the whole data,

SP(z 0y ), for 7 =7, and N =N, is given by:
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SP(7 e ) = ZSP( ) (1)

The accumulated departure at each time point D(N, k) from

the beginning of the period up to any time kAt , is calculated
by summing the differences in (1) from the mean:

D(N,k)= Z( P(t;)-SP(r max)j for ISk<N, (2)

i=1
where D(N,k) is equated to D(r,u), and u =kAt, and
7= NAt.
The range R(z) is estimated as the difference between the
maximum D, and the minimum D, accumulated de-
parture in (2), for ISk <N :

R(T) = Dinax = Dinin 3)
The standard deviation S(z) of the samples SP(z;) over the
period 7 during which the local mean is SP(r) is given by:
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and the “rescaled range” is the range of the deviations calcu-
lated in (3), rescaled or renormalized by the standard devia-
tion in (4):

R/S =R(z)/S(r) )
At this first stage, N equals the total number of all the val-
ues in the time series and provides a point at ¢ For the

next stage, N will cover a fraction of the entire data sample
set. The procedure described above will be repeatedly con-
tinued and R/S will be calculated for each segment of the
data set. The processing will continue using successively
shorter 7 ’s at each stage, dividing the data set into overlap-
ping segments and finding the average value R/S at each
segment. The functional relationship over intervals of lengths
7 compared to a reference length 7, is:

R()/S(c)=R(zy)/S(e)- (e /70 )" ©)
with H the Hurst coefficient. The equation for the best fit-
ting straight line is determined by using the linear Y on X
regression with Y =log(R/S)and X =log(r/7,), where
the exponent H is the slope of the regression line. For a
purely random sequence with no correlations among inter-
vals, H =0.5. A value of H # 0.5 indicates autocorrelation
in the signal, H >0.5 means positive correlation, while
H < 0.5 means negative correlation or anti-persistence [14].
For H > 0.5the data sequence is characterized by persis-
tence [10] because increases are more likely to be followed
by increases at all distances and vice versa for H <0.5.

max °

4. RESULTS AND DISCUSSION

During the recording period (January 1993 to December
1997), 3032 earthquakes with magnitude Ms > 3.0R were
recorded among which 18 where significant seismic events
with magnitude Ms > 4.8R. At the processing stage, spectral

analysis has been carried out using the non-linear fractal
method revealing a scaling behavior for the recorded signals
of the Long-Term Geoelectric Potential (LTGP). Results
were obtained using a fixed time window shifting through
the entire 5-year time period and not for intervals at time
periods just before and after the events. The spectral analysis
revealed a scaling behavior for the recorded geoelectrical
signal, with a =1.05 for the 18 significant earthquakes and
a2 =1.1 for the whole seismic activity. In fig. 3, the results
of this analysis are presented after the investigation of the
time variations of H and al calculated for the 18 signifi-
cant earthquakes. The outcome of H and a2 after the same
analysis can be found in fig. 4 when the entire seismic activ-
ity is employed.
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Figure 3: Correlation of H-coefficient and a-parameter for
the 18 most significant earthquakes.
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Figure 4: Correlation of H-coefficient and a-parameter for
the entire seismic activity signal.

The standard deviations of parameters A and a are in both
cases very small, (H =0.02 and a = 0.05). The values of
al and a2 vary approximately from 1.01 to 1.13 and from
1.02 to 1.21, with mean values 1.04 and 1.07 respectively.
The values of H range from 0.5 (at the very beginning) to
0.89, with average 0.86. It is obvious that ¢ and H tend to
decrease and increase respectively during the progress of the
preparation of the major earthquakes. Specifically, this be-
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haviour is apparent just before the occurrence of the major
earthquake, which respectively occurred nearby the geoelec-
tric dynamic monitoring station (No.5 of the Table 1 which
caused damages in the city of Patras). The same behavior
appears at the time interval about 3 weeks before the earth-
quakes No 10-11which destroyed the city of Aigio causing
40 deaths, as it is shown in fig. 3 and fig.4. Finally, ¢ and
H approach unity about 6 weeks before the major but far
away from the station event in the area (No.16-17 Strofades
island). It is noteworthy that similar behavior was observed
at the time interval four weeks before the big magnitude
earthquake (No.6), the epicentral point of which was far from
the station. All these cases of earthquakes are in the same
geotectonic area and that explains the greater sensitivity of
the channel for every earthquake disturbance. The aforemen-
tioned sensitivity is due to the similar behavior of the dipole
to an antenna sensor. These results are in agreement with the
behavior of the Long-Term Geoelectric Potential spectral
exponent observed in Hayakawa [8] and Telesca [10,11].

5. CONCLUSIONS

In this work we investigated the possible relation between the
behavior changes of a and H . The experimental results in-
dicate the existence of good correlation between a and H .
The increase of H exponent as well as its converge toward
unity indicates the respective persistence of the seismic proc-
ess to the earthquake event. In addition, the decrease of « -
coefficient toward unity is consistent with the appearance of
small- scale fractal structures in the focal zone. This is possi-
bly due to the evolution of the earth’s crust toward the self-
organization at the critical point and involves the formation
of fractal structures in the fault zone. This procedure results
in the observed geoelectrical signal. The presented results
indicate that the degree of correlation between seismic se-
quences and geoelectrical fluctuations can provide evidence
for upcoming earthquake events. However, the prediction
error seems to increase for the cases of earthquakes with
small magnitude or epicenter far from the station monitoring
of the geoelectric signal. This means that the earthquake gen-
eration process affects the LTGP dynamics in a manner de-
pendant upon many parameters (e.g. geological composition,
location of epicenter).

Future work remains to understand better the relations be-
tween the behavior changes of ¢ and H . The consideration
of many LTGP channels at the training algorithm could pro-
vide more information and can improve both the accuracy
and the reliability of this method. The measures of the
changes of ¢ and H gives promising results that can be
used together with other pre-seismic signals to solve the dif-
ficult problem of short time earthquake prediction.
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